Identification of Promotor and Exonic Variations, and Functional Characterization of a Splice Site Mutation in Indian Patients with Unconjugated Hyperbilirubinemia
نویسندگان
چکیده
BACKGROUND Mild unconjugated hyperbilirubinemia (UH), due to reduced activity of the enzyme uridine diphosphoglucuronate-glucuronosyltransferase family, polypeptide 1 (UGT1A1), is a common clinical condition. Most cases are caused by presence in homozygous form of an A(TA)7TAA nucleotide sequence instead of the usual A(TA)6TAA sequence in promoter region of the UGT1A1 gene. In some cases, other genetic variations have been identified which differ between populations. There is need for more data on such genetic variations from India. METHODS DNA from subjects with unexplained persistent or recurrent UH was tested for the presence of TA promoter insertions. In addition, all five exons and splicing site regions of UGT1A1 gene were sequenced. Several bioinformatics tools were used to determine the biological significance of the observed genetic changes. Functional analysis was done to look for effect of a splice site mutation in UGT1A1. RESULTS Of 71 subjects with UH (68 male; median age [range], 26 [16-63] years; serum bilirubin 56 [26-219] μM/L, predominantly unconjugated) studied, 65 (91.5%) subjects were homozygous for A(TA)7TAA allele, five (7.0%) were heterozygous, and one (1.4%) lacked this change. Fifteen subjects with UH had missense exonic single nucleotide changes (14 heterozygous, 1 homozygous), including one subject with a novel nucleotide change (p.Thr205Asn). Bioinformatics tools predicted some of these variations (p.Arg108Cys, p.Ile159Thr and p.Glu463Val) to be deleterious. Functional characterization of an exonic variation (c.1084G>A) located at a splice site revealed that it results in frameshift deletion of 31 nucleotides and premature truncation of the protein. CONCLUSION Our study revealed several single nucleotide variations in UGT1A1 gene in Indian subjects with UH. Functional characterization of a splice site variation indicated that it leads to disordered splicing. These variations may explain UH in subjects who lacked homozygous A(TA)7TAA promoter alleles.
منابع مشابه
Identification of a Novel Splice Site Mutation in RUNX2 Gene in a Family with Rare Autosomal Dominant Cleidocranial Dysplasia
Introduction: Pathogenic variants of RUNX2, a gene that encodes an osteoblast-specific transcription factor, have been shown as the cause of CCD, which is a rare hereditary skeletal and dental disorder with dominant mode of inheritance and a broad range of clinical variability. Due to the relative lack of clinical complications resulting in CCD, the medical diagnosis of this disorder is challen...
متن کاملRestoration of correct splicing in IVSI-110 mutation of β-globin gene with antisense oligonucleotides: implications and applications in functional assay development
Objective(s): The use of antisense oligonucleotides (AOs) to restore normal splicing by blocking the recognition of aberrant splice sites by the spliceosome represents an innovative means of potentially controlling certain inherited disorders affected by aberrant splicing. Selection of the appropriate target site is essential in the success of an AO therapy. In this study, in search for a splic...
متن کاملA Novel Splice Site Mutation in HPS1 Gene is Associated with Hermansky-Pudlak Syndrome-1 (HPS1) in an Iranian Family
متن کامل
Etiologies of Prolonged Unconjugated Hyperbilirubinemia in Neonates Admitted to Neonatal Wards
Background: Jaundice is a common condition among neonates. Prolonged unconjugated hyperbilirubinemia occurs when jaundice persists beyond two weeks in term neonates and three weeks in preterm neonates. This study aimed to determine the etiologies of prolonged unconjugated hyperbilirubinemia in infants admitted to the neonatal ward of Besat Hospital in Hamadan, Iran. Methods: This study was cond...
متن کاملO-48: Heterogenous Spectrum of CFTR GeneMutations in Indian Patients with CongenitalAbsence of Vas Deferens
Background: Mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene can cause congenital bilateral absence of vas deferens. Yet, the spectrum and frequency of CFTR mutations in Indian males with congenital absence of vas deferens (CAVD) is unknown. Materials and Methods: We investigated 50 Indian males, diagnosed with unilateral or bilateral absence of vas deferens at t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015